Filters
Question type

Study Flashcards

Find the dot product v · w. - v=2i+j+3k\mathbf { v } = 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k } and w=i+2j2k\mathbf { w } = \mathrm { i } + 2 \mathbf { j } - 2 \mathbf { k }


A) 2- 2
B) 7- 7
C) 2
D) 6- 6

Correct Answer

verifed

verified

Write the complex number in polar form. Express the argument in degrees, rounded to the nearest tenth, if necessary. - 6- 6


A) 6(cos270+isin270) 6 \left( \cos 270 ^ { \circ } + i \sin 270 ^ { \circ } \right)
B) 6(cos180+isin180) 6 \left( \cos 180 ^ { \circ } + i \sin 180 ^ { \circ } \right)
C) 6(cos0+isin0) 6 \left( \cos 0 ^ { \circ } + \mathrm { i } \sin 0 ^ { \circ } \right)
D) 6(cos90+isin90) 6 \left( \cos 90 ^ { \circ } + i \sin 90 ^ { \circ } \right)

Correct Answer

verifed

verified

Choose the one alternative that best completes the statement or answers the question. The polar coordinates of a point are given. Find the rectangular coordinates of the point. - (5,3π4) \left( 5 , \frac { 3 \pi } { 4 } \right)


A) (522,522) \left( \frac { - 5 \sqrt { 2 } } { 2 } , \frac { 5 \sqrt { 2 } } { 2 } \right)
B) (522,522) \left( \frac { - 5 \sqrt { 2 } } { 2 } , \frac { - 5 \sqrt { 2 } } { 2 } \right)
C) (522,522) \left( \frac { 5 \sqrt { 2 } } { 2 } , \frac { - 5 \sqrt { 2 } } { 2 } \right)
D) (522,522) \left( \frac { 5 \sqrt { 2 } } { 2 } , \frac { 5 \sqrt { 2 } } { 2 } \right)

Correct Answer

verifed

verified

Find the distance from P1 to P2. - P1=(0,0,0) \mathrm { P } _ { 1 } = ( 0,0,0 ) and P2=(2,4,3) \mathrm { P } _ { 2 } = ( 2,4,3 )


A) 23\sqrt { 23 }
B) 17\sqrt { 17 }
C) 29\sqrt { 29 }
D) 333 \sqrt { 3 }

Correct Answer

verifed

verified

Find the angle between v and w. Round your answer to one decimal place, if necessary. - v=5i+7j,w=6i4jv = - 5 i + 7 \mathbf { j } , \quad \mathbf { w } = - 6 \mathbf { i } - 4 \mathbf { j }


A) 110.8110.8 ^ { \circ }
B) 90.990.9 ^ { \circ }
C) 20.720.7 ^ { \circ }
D) 88.288.2 ^ { \circ }

Correct Answer

verifed

verified

Find the area of the parallelogram. - P1(0,0,0) ,P2(4,2,1) ,P3(2,3,1) \mathrm { P } _ { 1 } ( 0,0,0 ) , \mathrm { P } _ { 2 } ( 4,2,1 ) , \mathrm { P } _ { 3 } ( - 2,3,1 )


A) 293\sqrt { 293 }
B) 21\sqrt { 21 }
C) 233\sqrt { 233 }
D) 14\sqrt { 14 }

Correct Answer

verifed

verified

Solve the problem. Round your answer to the nearest tenth. -A person is pulling a freight cart with a force of 40 pounds. How much work is done in moving the cart 30 feet if the cart's handle makes an angle of 22° with the ground?


A) 1,112.6 ft-lb
B) 45.0 ft-lb
C) 449.5 ft-lb
D) 1,147.6 ft-lb

Correct Answer

verifed

verified

Graph the polar equation. - r=cscθ2,0<θ<πr=\csc \theta-2,0<\theta<\pi  Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi      A)      B)    C)     D)


A)
 Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi      A)      B)    C)     D)

B)
 Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi      A)      B)    C)     D)
C)
 Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi      A)      B)    C)     D)

D)
 Graph the polar equation. - r=\csc \theta-2,0<\theta<\pi      A)      B)    C)     D)

Correct Answer

verifed

verified

The rectangular coordinates of a point are given. Find polar coordinates for the point. - (100,30) ( 100 , - 30 ) Round the polar coordinates to two decimal places, with θ\theta in degrees.


A) (104.40,16.70) \left( 104.40,16.70 ^ { \circ } \right)
B) (104.40,106.70) \left( 104.40 , - 106.70 ^ { \circ } \right)
C) (104.40,16.70) \left( 104.40 , - 16.70 ^ { \circ } \right)
D) (104.40,106.70) \left( 104.40,106.70 ^ { \circ } \right)

Correct Answer

verifed

verified

C

Choose the one alternative that best completes the statement or answers the question. Find the direction angles of the vector. Round to the nearest degree, if necessary. - v=ij+2k\mathbf { v } = \mathbf { i } - \mathbf { j } + 2 \mathbf { k }


A) α=66,β=114,γ=35\alpha = 66 ^ { \circ } , \beta = 114 ^ { \circ } , \gamma = 35 ^ { \circ }
B) α=80,β=100,γ=71\alpha = 80 ^ { \circ } , \beta = 100 ^ { \circ } , \gamma = 71 ^ { \circ }
C) α=63,β=117,γ=26\alpha = 63 ^ { \circ } , \beta = 117 ^ { \circ } , \gamma = 26 ^ { \circ }
D) α=69,β=111,γ=45\alpha = 69 ^ { \circ } , \beta = 111 ^ { \circ } , \gamma = 45 ^ { \circ }

Correct Answer

verifed

verified

A

Plot the point given in polar coordinates. - (4,5π4) \left( 4 , \frac { - 5 \pi } { 4 } \right)  Plot the point given in polar coordinates. - \left( 4 , \frac { - 5 \pi } { 4 } \right)     A)     B)    C)     D)


A)
 Plot the point given in polar coordinates. - \left( 4 , \frac { - 5 \pi } { 4 } \right)     A)     B)    C)     D)

B)
 Plot the point given in polar coordinates. - \left( 4 , \frac { - 5 \pi } { 4 } \right)     A)     B)    C)     D)
C)
 Plot the point given in polar coordinates. - \left( 4 , \frac { - 5 \pi } { 4 } \right)     A)     B)    C)     D)

D)
 Plot the point given in polar coordinates. - \left( 4 , \frac { - 5 \pi } { 4 } \right)     A)     B)    C)     D)

Correct Answer

verifed

verified

Find the unit vector having the same direction as v. - v=3i+j\mathbf { v } = - 3 \mathbf { i } + \mathbf { j }


A) u=31010i1010j\mathbf { u } = - \frac { 3 \sqrt { 10 } } { 10 } \mathbf { i } - \frac { \sqrt { 10 } } { 10 } \mathbf { j }
B) u=103i+10j\mathbf { u } = - \frac { \sqrt { 10 } } { 3 } \mathbf { i } + \sqrt { 10 } \mathbf { j }
C) u=310i+10j\mathbf { u } = - 3 \sqrt { 10 } \mathbf { i } + \sqrt { 10 } \mathbf { j }
D) u=31010i+1010j\mathbf { u } = - \frac { 3 \sqrt { 10 } } { 10 } \mathbf { i } + \frac { \sqrt { 10 } } { 10 } \mathbf { j }

Correct Answer

verifed

verified

Write the word or phrase that best completes each statement or answers the question. Solve the problem. -Find a unit vector normal to the plane containing u=i+j+4k and v=2i3j+k\mathbf { u } = - \mathbf { i } + \mathbf { j } + 4 \mathbf { k } \text { and } \mathbf { v } = 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k }

Correct Answer

verifed

verified

Solve the problem. Leave your answer in polar form. - z=1iw=13i\begin{array} { l } z = 1 - i \\w = 1 - \sqrt { 3 } i\end{array} Find zw\frac { z } { w } .


A) 22(cos75+isin75) \frac { \sqrt { 2 } } { 2 } \left( \cos 75 ^ { \circ } + i \sin 75 ^ { \circ } \right)
B) 12(cos75+isin75) \frac { 1 } { 2 } \left( \cos 75 ^ { \circ } + i \sin 75 ^ { \circ } \right)
C) 22(cos15+isin15) \frac { \sqrt { 2 } } { 2 } \left( \cos 15 ^ { \circ } + i \sin 15 ^ { \circ } \right)
D) 12(cos15+isin15) \frac { 1 } { 2 } \left( \cos 15 ^ { \circ } + i \sin 15 ^ { \circ } \right)

Correct Answer

verifed

verified

C

Write the complex number in rectangular form. - 8(cosπ6+isinπ6) 8 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right)


A) 4+43i4 + 4 \sqrt { 3 } \mathrm { i }
B) 14+34i\frac { 1 } { 4 } + \frac { \sqrt { 3 } } { 4 } \mathrm { i }
C) 43+4i4 \sqrt { 3 } + 4 i
D) 34+14i\frac { \sqrt { 3 } } { 4 } + \frac { 1 } { 4 } \mathrm { i }

Correct Answer

verifed

verified

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - rsinθ=4r \sin \theta = 4  Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4    A)     B)       x = - 4 ; vertical line 4 units to the left of the pole C)        x = 4 ; vertical line 4 units  to the right of the pole  D)       y = - 4 ; horizontal line 4 units below the pole     \mathrm { y } = 4 ; horizontal line 4 units above the pole


A)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4    A)     B)       x = - 4 ; vertical line 4 units to the left of the pole C)        x = 4 ; vertical line 4 units  to the right of the pole  D)       y = - 4 ; horizontal line 4 units below the pole     \mathrm { y } = 4 ; horizontal line 4 units above the pole

B)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4    A)     B)       x = - 4 ; vertical line 4 units to the left of the pole C)        x = 4 ; vertical line 4 units  to the right of the pole  D)       y = - 4 ; horizontal line 4 units below the pole     \mathrm { y } = 4 ; horizontal line 4 units above the pole

x=4x = - 4 ; vertical line 4 units
to the left of the pole
C)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4    A)     B)       x = - 4 ; vertical line 4 units to the left of the pole C)        x = 4 ; vertical line 4 units  to the right of the pole  D)       y = - 4 ; horizontal line 4 units below the pole     \mathrm { y } = 4 ; horizontal line 4 units above the pole



x=4x = 4 ; vertical line 4 units

to the right of the pole

D)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r \sin \theta = 4    A)     B)       x = - 4 ; vertical line 4 units to the left of the pole C)        x = 4 ; vertical line 4 units  to the right of the pole  D)       y = - 4 ; horizontal line 4 units below the pole     \mathrm { y } = 4 ; horizontal line 4 units above the pole

y=4y = - 4 ; horizontal line 4 units
below the pole



y=4\mathrm { y } = 4 ; horizontal line 4 units
above the pole

Correct Answer

verifed

verified

Find the indicated cross product. - v=6i+5j3k,w=4i4k\mathbf { v } = 6 \mathbf { i } + 5 \mathbf { j } - 3 \mathbf { k } , \quad \mathbf { w } = - 4 \mathbf { i } - 4 \mathbf { k } Find v×wv \times w .


A) 20i+12j20k- 20 \mathbf { i } + 12 \mathrm { j } - 20 \mathbf { k }
B) 20i+36j+20k- 20 \mathbf { i } + 36 \mathbf { j } + 20 \mathbf { k }
C) 15i+34j+30k- 15 i + 34 j + 30 k
D) 20i+20j36k20 \mathrm { i } + 20 \mathrm { j } - 36 \mathbf { k }

Correct Answer

verifed

verified

Test the equation for symmetry with respect to the given axis, line, or pole. - r=6+2cosθ; the pole \mathrm { r } = 6 + 2 \cos \theta \text {; the pole }


A) Symmetric with respect to the pole
B) May or may not be symmetric with respect to the pole

Correct Answer

verifed

verified

Match the point in polar coordinates with either A, B, C, or D on the graph. - (3,π3) \left( - 3 , - \frac { \pi } { 3 } \right)  Match the point in polar coordinates with either A, B, C, or D on the graph. - \left( - 3 , - \frac { \pi } { 3 } \right)       A)  A B)  B C)  C D)  D


A) A
B) B
C) C
D) D

Correct Answer

verifed

verified

Choose the one alternative that best completes the statement or answers the question. The polar coordinates of a point are given. Find the rectangular coordinates of the point. - (7,2π3) \left( 7 , \frac { 2 \pi } { 3 } \right)


A) (72,732) \left( - \frac { 7 } { 2 } , \frac { 7 \sqrt { 3 } } { 2 } \right)
B) (72,732) \left( \frac { 7 } { 2 } , \frac { - 7 \sqrt { 3 } } { 2 } \right)
C) (72,732) \left( - \frac { 7 } { 2 } , \frac { - 7 \sqrt { 3 } } { 2 } \right)
D) (72,732) \left( \frac { 7 } { 2 } , \frac { 7 \sqrt { 3 } } { 2 } \right)

Correct Answer

verifed

verified

Showing 1 - 20 of 253

Related Exams

Show Answer