Filters
Question type

Study Flashcards

Give the domain and range of the relation. -Find g(a+1) g ( a + 1 ) when g(x) =4x+3g ( x ) = 4 x + 3


A) 4a+74 a + 7
B) 4a14 a - 1
C) 4a+34 a + 3
D) 14a+3\frac { 1 } { 4 } a + 3

Correct Answer

verifed

verified

Find the coordinates of the other endpoint of the segment, given its midpoint and one endpoint. -midpoint (8,9) ( - 8 , - 9 ) , endpoint (10,5) ( - 10 , - 5 )


A) (6,13) ( - 6 , - 13 )
B) (6,1) ( - 6 , - 1 )
C) (18,1) ( - 18 , - 1 )
D) (14,3) ( - 14,3 )

Correct Answer

verifed

verified

Determine whether the three points are collinear. -Which graphs of functions increase over the whole of their domain?


A) graphs A and B
B) graphs C and D
C) graphs A and D
D) graph D

Correct Answer

verifed

verified

Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =14x+6f(x) =\frac{1}{4} x+6  Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =\frac{1}{4} x+6    A)   \mathrm { D } = ( - \infty , \infty )  ,  \mathrm { R } = ( - \infty , \infty )     B)   \mathrm { D } = ( - \infty , \infty )  , \quad \mathrm { R } = ( - \infty , \infty )     C)   D = ( - \infty , \infty )  , \quad R = ( - \infty , \infty )     D)   D = ( - \infty , \infty )  , \quad R = ( - \infty , \infty )


A) D=(,) \mathrm { D } = ( - \infty , \infty ) , R=(,) \mathrm { R } = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =\frac{1}{4} x+6    A)   \mathrm { D } = ( - \infty , \infty )  ,  \mathrm { R } = ( - \infty , \infty )     B)   \mathrm { D } = ( - \infty , \infty )  , \quad \mathrm { R } = ( - \infty , \infty )     C)   D = ( - \infty , \infty )  , \quad R = ( - \infty , \infty )     D)   D = ( - \infty , \infty )  , \quad R = ( - \infty , \infty )
B) D=(,) ,R=(,) \mathrm { D } = ( - \infty , \infty ) , \quad \mathrm { R } = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =\frac{1}{4} x+6    A)   \mathrm { D } = ( - \infty , \infty )  ,  \mathrm { R } = ( - \infty , \infty )     B)   \mathrm { D } = ( - \infty , \infty )  , \quad \mathrm { R } = ( - \infty , \infty )     C)   D = ( - \infty , \infty )  , \quad R = ( - \infty , \infty )     D)   D = ( - \infty , \infty )  , \quad R = ( - \infty , \infty )
C) D=(,) ,R=(,) D = ( - \infty , \infty ) , \quad R = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =\frac{1}{4} x+6    A)   \mathrm { D } = ( - \infty , \infty )  ,  \mathrm { R } = ( - \infty , \infty )     B)   \mathrm { D } = ( - \infty , \infty )  , \quad \mathrm { R } = ( - \infty , \infty )     C)   D = ( - \infty , \infty )  , \quad R = ( - \infty , \infty )     D)   D = ( - \infty , \infty )  , \quad R = ( - \infty , \infty )
D) D=(,) ,R=(,) D = ( - \infty , \infty ) , \quad R = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =\frac{1}{4} x+6    A)   \mathrm { D } = ( - \infty , \infty )  ,  \mathrm { R } = ( - \infty , \infty )     B)   \mathrm { D } = ( - \infty , \infty )  , \quad \mathrm { R } = ( - \infty , \infty )     C)   D = ( - \infty , \infty )  , \quad R = ( - \infty , \infty )     D)   D = ( - \infty , \infty )  , \quad R = ( - \infty , \infty )

Correct Answer

verifed

verified

Find the slope of the line and sketch the graph. - 2x3y=32 x - 3 y = - 3  Find the slope of the line and sketch the graph. - 2 x - 3 y = - 3    A)   \mathrm { m } = \frac { 2 } { 3 }    B)   m = - \frac { 3 } { 2 }    C)   m = - \frac { 2 } { 3 }    D)   m = \frac { 3 } { 2 }


A) m=23\mathrm { m } = \frac { 2 } { 3 }
 Find the slope of the line and sketch the graph. - 2 x - 3 y = - 3    A)   \mathrm { m } = \frac { 2 } { 3 }    B)   m = - \frac { 3 } { 2 }    C)   m = - \frac { 2 } { 3 }    D)   m = \frac { 3 } { 2 }
B) m=32m = - \frac { 3 } { 2 }
 Find the slope of the line and sketch the graph. - 2 x - 3 y = - 3    A)   \mathrm { m } = \frac { 2 } { 3 }    B)   m = - \frac { 3 } { 2 }    C)   m = - \frac { 2 } { 3 }    D)   m = \frac { 3 } { 2 }
C) m=23m = - \frac { 2 } { 3 }
 Find the slope of the line and sketch the graph. - 2 x - 3 y = - 3    A)   \mathrm { m } = \frac { 2 } { 3 }    B)   m = - \frac { 3 } { 2 }    C)   m = - \frac { 2 } { 3 }    D)   m = \frac { 3 } { 2 }
D) m=32m = \frac { 3 } { 2 }
 Find the slope of the line and sketch the graph. - 2 x - 3 y = - 3    A)   \mathrm { m } = \frac { 2 } { 3 }    B)   m = - \frac { 3 } { 2 }    C)   m = - \frac { 2 } { 3 }    D)   m = \frac { 3 } { 2 }

Correct Answer

verifed

verified

Find the center and radius of the circle. - x2+y2+4x16y13=0x ^ { 2 } + y ^ { 2 } + 4 x - 16 y - 13 = 0


A) center: (2,8) ( 2 , - 8 ) ; radius: 81
B) center: (2,8) ( - 2,8 ) ; radius: 9
C) center: (8,2) ( - 8,2 ) ; radius: 81
D) center: (8,2) ( 8 , - 2 ) ; radius: 9

Correct Answer

verifed

verified

A new chocolate company is estimating how many candy bars per week college students will consume of their line of products. The graph shows the probable number of candy bars students (age 18-22) will consume from year 0 to year 10. B(x) gives the number of candy bars for boys, G(x) gives the number of candy bars for girls, and T(x) gives the total number for both groups. Use the graph to answer the question.  A new chocolate company is estimating how many candy bars per week college students will consume of their line of products. The graph shows the probable number of candy bars students (age 18-22)  will consume from year 0 to year 10. B(x)  gives the number of candy bars for boys, G(x)  gives the number of candy bars for girls, and T(x)  gives the total number for both groups. Use the graph to answer the question.   -The radius  \mathrm { r }  of a circle of known area  \mathrm { A }  is given by  \mathrm { r } = \sqrt { \mathrm { A } / \pi } , where  \pi \approx 3.1416 . Find the radius and circumference of a circle with an area of  48.71 \mathrm { sq } \mathrm { ft } . (Round results to two decimal places.)  A)   \mathrm { r } = 15.52 \mathrm { ft } , \mathrm { C } = 97.52 \mathrm { ft }  B)   \mathrm { r } = 3.94 \mathrm { ft } , \mathrm { C } = 24.76 \mathrm { ft }  C)   \mathrm { r } = 3.94 \mathrm { ft } , \mathrm { C } = 24.76 \mathrm { sq } \mathrm { ft }  D)   \mathrm { r } = 3.94 \mathrm { ft } , \mathrm { C } = 8.86 \mathrm { ft } -The radius r\mathrm { r } of a circle of known area A\mathrm { A } is given by r=A/π\mathrm { r } = \sqrt { \mathrm { A } / \pi } , where π3.1416\pi \approx 3.1416 . Find the radius and circumference of a circle with an area of 48.71sqft48.71 \mathrm { sq } \mathrm { ft } . (Round results to two decimal places.)


A) r=15.52ft,C=97.52ft\mathrm { r } = 15.52 \mathrm { ft } , \mathrm { C } = 97.52 \mathrm { ft }
B) r=3.94ft,C=24.76ft\mathrm { r } = 3.94 \mathrm { ft } , \mathrm { C } = 24.76 \mathrm { ft }
C) r=3.94ft,C=24.76sqft\mathrm { r } = 3.94 \mathrm { ft } , \mathrm { C } = 24.76 \mathrm { sq } \mathrm { ft }
D) r=3.94ft,C=8.86ft\mathrm { r } = 3.94 \mathrm { ft } , \mathrm { C } = 8.86 \mathrm { ft }

Correct Answer

verifed

verified

Graph the line and give the domain and the range. - y+4=0y+4=0  Graph the line and give the domain and the range. - y+4=0    A)   D = ( - \infty , \infty )  , R = \{ - 4 \}    B)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = \{ - 4 \}    C)   \mathrm { D } = \{ - 4 \} , \quad R = ( - \infty , \infty )     D)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )


A) D=(,) ,R={4}D = ( - \infty , \infty ) , R = \{ - 4 \}
 Graph the line and give the domain and the range. - y+4=0    A)   D = ( - \infty , \infty )  , R = \{ - 4 \}    B)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = \{ - 4 \}    C)   \mathrm { D } = \{ - 4 \} , \quad R = ( - \infty , \infty )     D)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )
B) D=(,) ,R={4}\mathrm { D } = ( - \infty , \infty ) , \mathrm { R } = \{ - 4 \}
 Graph the line and give the domain and the range. - y+4=0    A)   D = ( - \infty , \infty )  , R = \{ - 4 \}    B)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = \{ - 4 \}    C)   \mathrm { D } = \{ - 4 \} , \quad R = ( - \infty , \infty )     D)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )
C) D={4},R=(,) \mathrm { D } = \{ - 4 \} , \quad R = ( - \infty , \infty )
 Graph the line and give the domain and the range. - y+4=0    A)   D = ( - \infty , \infty )  , R = \{ - 4 \}    B)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = \{ - 4 \}    C)   \mathrm { D } = \{ - 4 \} , \quad R = ( - \infty , \infty )     D)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )
D) D=(,) ,R=(,) \mathrm { D } = ( - \infty , \infty ) , \mathrm { R } = ( - \infty , \infty )
 Graph the line and give the domain and the range. - y+4=0    A)   D = ( - \infty , \infty )  , R = \{ - 4 \}    B)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = \{ - 4 \}    C)   \mathrm { D } = \{ - 4 \} , \quad R = ( - \infty , \infty )     D)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )

Correct Answer

verifed

verified

Determine the intervals of the domain over which the function is continuous. -P(2, 3)  Determine the intervals of the domain over which the function is continuous. -P(2, 3)    A)   ( - \infty , 2 ] \cup [ 2 , \infty )   B)   ( - \infty , 3 )  \cup ( 3 , \infty )   C)   ( - \infty , 2 )  \cup ( 2 , \infty )   D)   ( - \infty , \infty )


A) (,2][2,) ( - \infty , 2 ] \cup [ 2 , \infty )
B) (,3) (3,) ( - \infty , 3 ) \cup ( 3 , \infty )
C) (,2) (2,) ( - \infty , 2 ) \cup ( 2 , \infty )
D) (,) ( - \infty , \infty )

Correct Answer

verifed

verified

Describe how the graph of the equation relates to the graph of y y=x3y = \sqrt [ 3 ] { x } . - f(x) =(x6) 22f(x) =-(x-6) ^{2}-2  Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  . - f(x) =-(x-6) ^{2}-2    A)    B)    C)    D)


A)
 Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  . - f(x) =-(x-6) ^{2}-2    A)    B)    C)    D)
B)
 Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  . - f(x) =-(x-6) ^{2}-2    A)    B)    C)    D)
C)
 Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  . - f(x) =-(x-6) ^{2}-2    A)    B)    C)    D)
D)
 Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  . - f(x) =-(x-6) ^{2}-2    A)    B)    C)    D)

Correct Answer

verifed

verified

Compute and simplify the difference quotient f(x+h) f(x) h,h0\frac { f ( x + h ) - f ( x ) } { h } , h \neq 0 - f(x) =2x2+7xf ( x ) = 2 x ^ { 2 } + 7 x


A) 6x4h+146 x - 4 h + 14
B) 4x2+2h+7x4 x ^ { 2 } + 2 h + 7 x
C) 4x+74 x + 7
D) 4x+2h+74 x + 2 h + 7

Correct Answer

verifed

verified

Describe how the graph of the equation relates to the graph of y y=x3y = \sqrt [ 3 ] { x } . - f(x) =13xf ( x ) = \frac { 1 } { 3 } | - x |  Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  . - f ( x )  = \frac { 1 } { 3 } | - x |    A)    B)    C)    D)


A)
 Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  . - f ( x )  = \frac { 1 } { 3 } | - x |    A)    B)    C)    D)
B)
 Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  . - f ( x )  = \frac { 1 } { 3 } | - x |    A)    B)    C)    D)
C)
 Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  . - f ( x )  = \frac { 1 } { 3 } | - x |    A)    B)    C)    D)
D)
 Describe how the graph of the equation relates to the graph of y  y = \sqrt [ 3 ] { x }  . - f ( x )  = \frac { 1 } { 3 } | - x |    A)    B)    C)    D)

Correct Answer

verifed

verified

Decide whether the relation defines a function. - y=3x3y = \frac { 3 } { x - 3 }


A) Function
B) Not a function

Correct Answer

verifed

verified

Graph the point symmetric to the given point. -  Plot the point (4,7) , then plot the point that is symmetric to (4,7)  with respect to the y-axis. \text { Plot the point } ( - 4,7 ) \text {, then plot the point that is symmetric to } ( - 4,7 ) \text { with respect to the } y \text {-axis. }  Graph the point symmetric to the given point. - \text { Plot the point } ( - 4,7 )  \text {, then plot the point that is symmetric to } ( - 4,7 )  \text { with respect to the } y \text {-axis. }    A)    B)    C)    D)


A)
 Graph the point symmetric to the given point. - \text { Plot the point } ( - 4,7 )  \text {, then plot the point that is symmetric to } ( - 4,7 )  \text { with respect to the } y \text {-axis. }    A)    B)    C)    D)
B)
 Graph the point symmetric to the given point. - \text { Plot the point } ( - 4,7 )  \text {, then plot the point that is symmetric to } ( - 4,7 )  \text { with respect to the } y \text {-axis. }    A)    B)    C)    D)
C)
 Graph the point symmetric to the given point. - \text { Plot the point } ( - 4,7 )  \text {, then plot the point that is symmetric to } ( - 4,7 )  \text { with respect to the } y \text {-axis. }    A)    B)    C)    D)
D)
 Graph the point symmetric to the given point. - \text { Plot the point } ( - 4,7 )  \text {, then plot the point that is symmetric to } ( - 4,7 )  \text { with respect to the } y \text {-axis. }    A)    B)    C)    D)

Correct Answer

verifed

verified

Graph the equation by plotting points. - y=(x+1) 3y=(x+1) ^{3}  Graph the equation by plotting points. - y=(x+1) ^{3}    A)    B)    C)    D)


A)
 Graph the equation by plotting points. - y=(x+1) ^{3}    A)    B)    C)    D)
B)
 Graph the equation by plotting points. - y=(x+1) ^{3}    A)    B)    C)    D)
C)
 Graph the equation by plotting points. - y=(x+1) ^{3}    A)    B)    C)    D)
D)
 Graph the equation by plotting points. - y=(x+1) ^{3}    A)    B)    C)    D)

Correct Answer

verifed

verified

Write an equation for the line described. Give your answer in slope-intercept form. - m=7\mathrm { m } = - 7 , through (4,2) ( - 4,2 )


A) y=7x24y = 7 x - 24
B) y=7x26y = - 7 x - 26
C) y=7x+33y = - 7 x + 33
D) 7x+y=267 x + y = 26

Correct Answer

verifed

verified

Give a rule for the piecewise-defined function. Then give the domain and range. - Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x + 4 & \text { if } x \geq 1 \end{array} ; \right.  Domain:  ( \infty , \infty )  , Range:  ( \infty , 1 )  \cup [ 5 , \infty )   B)   f ( x )  = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x - 4 & \text { if } x \geq 1 \end{array} ; \right.  Domain:  ( \infty , 1 )  \cup [ 5 , \infty )  , Range:  ( \infty , \infty )   C)   f ( x )  = \left\{ \begin{array} { l l } \sqrt [ 3 ] { x } & \text { if } x < 1 ; \text { Domain: } ( \infty , \infty )  , \text { Range: } ( \infty , 1 )  \cup [ 5 , \infty )  \\ x + 4 & \text { if } x \geq 1 \end{array} \right.  D)   f ( x )  = \left\{ \begin{array} { l l } - x ^ { 3 } & \text { if } x < 1 \\ x - 4 & \text { if } x \geq 1 \end{array} ; \right.  Domain:  ( \infty , 1 )  \cup [ 5 , \infty )  , Range:  ( \infty , \infty )


A) f(x) ={x3 if x<1x+4 if x1;f ( x ) = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x + 4 & \text { if } x \geq 1 \end{array} ; \right. Domain: (,) ( \infty , \infty ) , Range: (,1) [5,) ( \infty , 1 ) \cup [ 5 , \infty )
B) f(x) ={x3 if x<1x4 if x1;f ( x ) = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x - 4 & \text { if } x \geq 1 \end{array} ; \right. Domain: (,1) [5,) ( \infty , 1 ) \cup [ 5 , \infty ) , Range: (,) ( \infty , \infty )
C) f(x) ={x3 if x<1; Domain: (,) , Range: (,1) [5,) x+4 if x1f ( x ) = \left\{ \begin{array} { l l } \sqrt [ 3 ] { x } & \text { if } x < 1 ; \text { Domain: } ( \infty , \infty ) , \text { Range: } ( \infty , 1 ) \cup [ 5 , \infty ) \\ x + 4 & \text { if } x \geq 1 \end{array} \right.
D) f(x) ={x3 if x<1x4 if x1;f ( x ) = \left\{ \begin{array} { l l } - x ^ { 3 } & \text { if } x < 1 \\ x - 4 & \text { if } x \geq 1 \end{array} ; \right. Domain: (,1) [5,) ( \infty , 1 ) \cup [ 5 , \infty ) , Range: (,) ( \infty , \infty )

Correct Answer

verifed

verified

Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =14xf(x) =\frac{1}{4} x  Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =\frac{1}{4} x    A)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )     B)   \mathrm { D } = ( - \infty , \infty )  , \quad \mathrm { R } = ( - \infty , \infty )     C)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )     D)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )


A) D=(,) ,R=(,) \mathrm { D } = ( - \infty , \infty ) , \mathrm { R } = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =\frac{1}{4} x    A)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )     B)   \mathrm { D } = ( - \infty , \infty )  , \quad \mathrm { R } = ( - \infty , \infty )     C)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )     D)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )
B) D=(,) ,R=(,) \mathrm { D } = ( - \infty , \infty ) , \quad \mathrm { R } = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =\frac{1}{4} x    A)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )     B)   \mathrm { D } = ( - \infty , \infty )  , \quad \mathrm { R } = ( - \infty , \infty )     C)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )     D)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )
C) D=(,) ,R=(,) \mathrm { D } = ( - \infty , \infty ) , \mathrm { R } = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =\frac{1}{4} x    A)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )     B)   \mathrm { D } = ( - \infty , \infty )  , \quad \mathrm { R } = ( - \infty , \infty )     C)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )     D)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )
D) D=(,) ,R=(,) \mathrm { D } = ( - \infty , \infty ) , \mathrm { R } = ( - \infty , \infty )
 Graph the linear function and give the domain and the range. If the function is a constant function, identify it as such. - f(x) =\frac{1}{4} x    A)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )     B)   \mathrm { D } = ( - \infty , \infty )  , \quad \mathrm { R } = ( - \infty , \infty )     C)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )     D)   \mathrm { D } = ( - \infty , \infty )  , \mathrm { R } = ( - \infty , \infty )

Correct Answer

verifed

verified

For the pair of functions, find the indicated sum, difference, product, or quotient. - f(x) =3x+5,g(x) =9x16f ( x ) = \sqrt { 3 x + 5 } , g ( x ) = \sqrt { 9 x - 16 } Find (fg) (x) ( f g ) ( x ) .


A) (3x+5) (9x16) ( \sqrt { 3 x + 5 } ) ( \sqrt { 9 x - 16 } )
B) (3x+5) (9x16) ( 3 x + 5 ) ( 9 x - 16 )
C) (3x+5) (3x4) ( 3 x + 5 ) ( 3 x - 4 )
D) (3x4) (3x+5) ( 3 x - 4 ) ( \sqrt { 3 x + 5 } )

Correct Answer

verifed

verified

Find the specified domain. -Find the domain of (f+g) (x) ( f + g ) ( x ) when f(x) =3x+9f ( x ) = 3 x + 9 and g(x) =2x8g ( x ) = \frac { 2 } { x - 8 }


A) (,8) (8,) ( - \infty , 8 ) \cup ( 8 , \infty )
B) (,) ( - \infty , \infty )
C) (,2) (2,) ( - \infty , - 2 ) \cup ( - 2 , \infty )
D) (,8) (8,) ( - \infty , - 8 ) \cup ( - 8 , \infty )

Correct Answer

verifed

verified

Showing 261 - 280 of 531

Related Exams

Show Answer