Filters
Question type

Study Flashcards

 Consider the function given by f(x) =n=1(1) n+1(x7) nn. Find the interval of \text { Consider the function given by } f ( x ) = \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } ( x - 7 ) ^ { n } } { n } \text {. Find the interval of } convergence for f(x) dx\int f ( x ) d x .


A) [7,7][ - 7,7 ]
B) [6,8][ 6,8 ]
C) (6,8) ( 6,8 )
D) (0,8) ( 0,8 )
E) (7,7) ( - 7,7 )

Correct Answer

verifed

verified

Find a geometric power series for the function 17x centered at 0\frac { 1 } { 7 - x } \text { centered at } 0 \text {. }


A)
n=0xn7n+1\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { 7 ^ { n } + 1 }
B)
n=0(x7) n+1\sum _ { n = 0 } ^ { \infty } \left( \frac { x } { 7 } \right) ^ { n } + 1
C)
n=0(x7) n\sum _ { n = 0 } ^ { \infty } \left( \frac { x } { 7 } \right) ^ { n }
D)
n=0xn7n+1\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { 7 ^ { n + 1 } }
E)
n=0(x7) n+1\sum _ { n = 0 } ^ { \infty } \left( \frac { x } { 7 } \right) ^ { n + 1 }

Correct Answer

verifed

verified

The series n=16n4n2+1 diverges. \text {The series } \sum _ { n = 1 } ^ { \infty } \frac { 6 n } { 4 n ^ { 2 } + 1 } \text { diverges. }

Correct Answer

verifed

verified

Use the Root Test to determine the convergence or divergence of the series. n=1(7n2+110n21) n\sum _ { n = 1 } ^ { \infty } \left( \frac { 7 n ^ { 2 } + 1 } { 10 n ^ { 2 } - 1 } \right) ^ { n }


A) Root Test inconclusive
B) converges
C) diverges

Correct Answer

verifed

verified

Find the fourth degree Taylor polynomial centered at c=7c = 7 for the function. f(x) =lnxf ( x ) = \ln x


A) ln717(x7) 198(x7) 211029(x7) 319604(x7) 4\ln 7 - \frac { 1 } { 7 } ( x - 7 ) - \frac { 1 } { 98 } ( x - 7 ) ^ { 2 } - \frac { 1 } { 1029 } ( x - 7 ) ^ { 3 } - \frac { 1 } { 9604 } ( x - 7 ) ^ { 4 }
B) ln7+7(x7) 98(x7) 2+1029(x7) 39604(x7) 4\ln 7 + 7 ( x - 7 ) - 98 ( x - 7 ) ^ { 2 } + 1029 ( x - 7 ) ^ { 3 } - 9604 ( x - 7 ) ^ { 4 }
C) ln7+17(x7) 198(x7) 2+11029(x7) 319604(x7) 4\ln 7 + \frac { 1 } { 7 } ( x - 7 ) - \frac { 1 } { 98 } ( x - 7 ) ^ { 2 } + \frac { 1 } { 1029 } ( x - 7 ) ^ { 3 } - \frac { 1 } { 9604 } ( x - 7 ) ^ { 4 }
D) ln77(x7) +98(x7) 21029(x7) 3+9604(x7) 4\ln 7 - 7 ( x - 7 ) + 98 ( x - 7 ) ^ { 2 } - 1029 ( x - 7 ) ^ { 3 } + 9604 ( x - 7 ) ^ { 4 }
E) ln717(x7) +198(x7) 211029(x7) 3+19604(x7) 4\ln 7 - \frac { 1 } { 7 } ( x - 7 ) + \frac { 1 } { 98 } ( x - 7 ) ^ { 2 } - \frac { 1 } { 1029 } ( x - 7 ) ^ { 3 } + \frac { 1 } { 9604 } ( x - 7 ) ^ { 4 }

Correct Answer

verifed

verified

Use the Integral Test to determine the convergence or divergence of the series. n=210nlnn\sum _ { n = 2 } ^ { \infty } \frac { 10 } { n \sqrt { \ln n } }


A) diverges
B) converges
C) Integral Test inconclusive

Correct Answer

verifed

verified

Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.) n=0(x6) n\sum _ { n = 0 } ^ { \infty } \left( \frac { x } { 6 } \right) ^ { n }


A) [6,6) [ - 6,6 )
B) (6,6) ( - 6,6 )
C) [6,6][ - 6,6 ]
D) (16,16) \left( \frac { - 1 } { 6 } , \frac { 1 } { 6 } \right)
E) [16,16) \left[ \frac { - 1 } { 6 } , \frac { 1 } { 6 } \right)

Correct Answer

verifed

verified

Find the sum of the convergent series n=0(16n17n) \sum _ { n = 0 } ^ { \infty } \left( \frac { 1 } { 6 ^ { n } } - \frac { 1 } { 7 ^ { n } } \right)


A) 17\frac { 1 } { 7 }
B) 130\frac { 1 } { 30 }
C) 137\frac { 1 } { 37 }
D) 160\frac { 1 } { 60 }
E) 114\frac { 1 } { 14 }

Correct Answer

verifed

verified

Suppose you go to work at a company that pays $0.08 for the first day, $0.16 for the second day, $0.32 for the third day, and so on. If the daily wage keeps doubling, what would your Total income be for working 29 days? Round your answer to two decimal places.


A) $21,474,836.48
B) $10,737,418.24
C) $42,949,672.88
D) $171,798,691.52
E) $85,899,345.76

Correct Answer

verifed

verified

 Graph the sequence an=4(1) n\text { Graph the sequence } a _ { n } = 4 ( - 1 ) ^ { n } \text {. }


A)
\text { Graph the sequence } a _ { n } = 4 ( - 1 )  ^ { n } \text {. }   A)    B)    C)     D)    E)
B)
\text { Graph the sequence } a _ { n } = 4 ( - 1 )  ^ { n } \text {. }   A)    B)    C)     D)    E)
C)
\text { Graph the sequence } a _ { n } = 4 ( - 1 )  ^ { n } \text {. }   A)    B)    C)     D)    E)
D)
\text { Graph the sequence } a _ { n } = 4 ( - 1 )  ^ { n } \text {. }   A)    B)    C)     D)    E)
E)
\text { Graph the sequence } a _ { n } = 4 ( - 1 )  ^ { n } \text {. }   A)    B)    C)     D)    E)

Correct Answer

verifed

verified

Determine the convergence or divergence of the series. 8n=11n1.158 \cdot \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 1.15 } }


A) converges
B) diverges
C) cannot be determined

Correct Answer

verifed

verified

Use the Ratio Test to determine the convergence or divergence of the series. n=1n(310) n\sum _ { n = 1 } ^ { \infty } n \left( \frac { 3 } { 10 } \right) ^ { n }


A) diverges
B) Ratio Test inconclusive
C) converges

Correct Answer

verifed

verified

Suppose the winner of a $4,000,000 sweepstakes will be paid $100,000 per year for 40 years, starting a year from now. The money earns 5% interest per year. The present value of the winnings is n=140100,000(11.05) n\sum _ { n = 1 } ^ { 40 } 100,000 \left( \frac { 1 } { 1.05 } \right) ^ { n } . Compute the present value using the formula for the nn th partial sum of a geometric series. Round your answer to two decimal places.


A) $6,852,274.09\$ 6,852,274.09
B) $1,959,646.05\$ 1,959,646.05
C) $4,568,182.73\$ 4,568,182.73
D) $1,246,221.03\$ 1,246,221.03
E) $1,715,908.64\$ 1,715,908.64

Correct Answer

verifed

verified

Use the Direct Comparison Test (if possible) to determine whether the series n=91n5/68\sum _ { n = 9 } ^ { \infty } \frac { 1 } { n ^ { 5 / 6 } - 8 }


A) converges
B) diverges

Correct Answer

verifed

verified

Use the Limit Comparison Test to determine the convergence or divergence of the series n=12sin1n\sum _ { n = 1 } ^ { \infty } 2 \sin \frac { 1 } { n } .


A) The series n=12sin1n\sum _ { n = 1 } ^ { \infty } 2 \sin \frac { 1 } { n } converges.
B) The series n=12sin1n\sum _ { n = 1 } ^ { \infty } 2 \sin \frac { 1 } { n } diverges.

Correct Answer

verifed

verified

Use the Direct Comparison Test to determine the convergence or divergence of the series n=117n2+9\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 7 n ^ { 2 } + 9 } .


A) The series n=117n2+9\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 7 n ^ { 2 } + 9 } converges.
B) The series n=117n2+9\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 7 n ^ { 2 } + 9 } diverges.

Correct Answer

verifed

verified

 Use the series n=0(1) nx2n+12n+1 for f(x) =arctanx to approximate the value of \text { Use the series } \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \frac { x ^ { 2 n + 1 } } { 2 n + 1 } \text { for } f ( x ) = \arctan x \text { to approximate the value of } arctan18\arctan \frac { 1 } { 8 } using RN0.001R _ { N } \leq 0.001 . Round your answer to three decimal places.


A) 0.1250.125
B) 0.1110.111
C) 0.1430.143
D) 0.1000.100
E) 0.1330.133

Correct Answer

verifed

verified

Suppose the annual spending by tourists in a resort city is $100 million. Approximately 75% of that revenue is again spent in the resort city, and of that amount approximately 75% is again spent in the same city, and so on. Summing all of this spending indefinitely, leads to the geometric series i=0100(0.75i) \sum _ { i = 0 } ^ { \infty } 100 \left( 0.75 ^ { i } \right) . Find the sum of this series.


A) $800\$ 800 million
B) $401\$ 401 million
C) $200\$ 200 million
D) $801\$801 million
E) $400\$ 400 million

Correct Answer

verifed

verified

 Use a graphing utility to graph f(x) =12x3 and P1, a first-degree polynomial \text { Use a graphing utility to graph } f ( x ) = \frac { 12 } { \sqrt [ 3 ] { x } } \text { and } P _ { 1 } \text {, a first-degree polynomial } function whose value and slope agree with the value and slope of f at .


A)
\text { Use a graphing utility to graph } f ( x )  = \frac { 12 } { \sqrt [ 3 ] { x } } \text { and } P _ { 1 } \text {, a first-degree polynomial }  function whose value and slope agree with the value and slope of f at .  A)    B)    C)    D)    E)
B)
\text { Use a graphing utility to graph } f ( x )  = \frac { 12 } { \sqrt [ 3 ] { x } } \text { and } P _ { 1 } \text {, a first-degree polynomial }  function whose value and slope agree with the value and slope of f at .  A)    B)    C)    D)    E)
C)
\text { Use a graphing utility to graph } f ( x )  = \frac { 12 } { \sqrt [ 3 ] { x } } \text { and } P _ { 1 } \text {, a first-degree polynomial }  function whose value and slope agree with the value and slope of f at .  A)    B)    C)    D)    E)
D)
\text { Use a graphing utility to graph } f ( x )  = \frac { 12 } { \sqrt [ 3 ] { x } } \text { and } P _ { 1 } \text {, a first-degree polynomial }  function whose value and slope agree with the value and slope of f at .  A)    B)    C)    D)    E)
E)
\text { Use a graphing utility to graph } f ( x )  = \frac { 12 } { \sqrt [ 3 ] { x } } \text { and } P _ { 1 } \text {, a first-degree polynomial }  function whose value and slope agree with the value and slope of f at .  A)    B)    C)    D)    E)

Correct Answer

verifed

verified

Showing 161 - 179 of 179

Related Exams

Show Answer