Filters
Question type

Study Flashcards

Show that the function has exactly one zero in the given interval. - r(θ)=5cotθ+1θ2+6,(0,π)r ( \theta ) = 5 \cot \theta + \frac { 1 } { \theta ^ { 2 } } + 6 , ( 0 , \pi )

Correct Answer

verifed

verified

The function blured image is continuous on the open ...

View Answer

Find the derivative at each critical point and determine the local extreme values. - y=x21xy = x ^ { 2 } \sqrt { 1 - x }


A)
 Critical Pt.  derivative  Extremum  Value x=450 local max 161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=\frac{4}{5} & 0 & \text { local max } & \frac{16}{125} \sqrt{5}\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=00 min 0x=10 min 0x=450 local max161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & 0 & \text { min } & 0 \\x=1 & 0 & \text { min } & 0 \\x=\frac{4}{5} & 0 & \text { local } \max & \frac{16}{125} \sqrt{5}\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=00min0x=1 undefined  min 0x=450 local max 161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & 0 & \min & 0 \\x=1 & \text { undefined } & \text { min } & 0 \\x=\frac{4}{5} & 0 & \text { local max } & \frac{16}{125} \sqrt{5}\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=1 undefined  min 0x=450 local max161255\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=1 & \text { undefined } & \text { min } & 0 \\x=\frac{4}{5} & 0 & \text { local } \max & \frac{16}{125} \sqrt{5}\end{array}

Correct Answer

verifed

verified

Find the value or values of cc that satisfy the equation f(b) f(a) ba=f(c) \frac { f ( b ) - f ( a ) } { b - a } = f ^ { \prime } ( c ) in the conclusion of the Mean Value Theorem for the function and interval. -An approximation to the total profit (in thousands of dollars) from the sale of xx hundred thousand tires is given by p=x3+15x248x+450,x3p = - x ^ { 3 } + 15 x ^ { 2 } - 48 x + 450 , x \geq 3 . Find the number of hundred thousands of tires that must be sold to maximize profit.


A) 5 hundred thousand
B) 3 hundred thousand
C) 10 hundred thousand
D) 8 hundred thousand

Correct Answer

verifed

verified

Find the largest open interval where the function is changing as requested. -Increasing f(x) =1x2+1\quad f ( x ) = \frac { 1 } { x ^ { 2 } + 1 }


A) (,1) ( - \infty , 1 )
B) (0,) ( 0 , \infty )
C) (,0) ( - \infty , 0 )
D) (1,) ( 1 , \infty )

Correct Answer

verifed

verified

Determine all critical points for the function. - f(x) =x312x+5f ( x ) = x ^ { 3 } - 12 x + 5


A) x=2x = - 2 and x=2x = 2
B) x=2x = 2
C) x=2x = - 2
D) x=2,x=0x = - 2 , x = 0 , and x=2x = 2

Correct Answer

verifed

verified

Find all possible functions with the given derivative. - y=x36xy ^ { \prime } = x ^ { 3 } - 6 x


A) x446x22+C\frac { x ^ { 4 } } { 4 } - \frac { 6 x ^ { 2 } } { 2 } + C
B) x336x22+C\frac { x ^ { 3 } } { 3 } - \frac { 6 x ^ { 2 } } { 2 } + C
C) 3x26+C3 x ^ { 2 } - 6 + C
D) x44+6x2+C\frac { x ^ { 4 } } { 4 } + 6 x ^ { 2 } + C

Correct Answer

verifed

verified

Using the derivative of f(x) given below, determine the critical points of f(x) . -f'(x) = (x - 5) e-x


A) 5
B) 6
C) -6
D) -5

Correct Answer

verifed

verified

Identify the function's local and absolute extreme values, if any, saying where they occur. - f(x) =x3+9x2+27x3f ( x ) = x ^ { 3 } + 9 x ^ { 2 } + 27 x - 3


A) local maximum at x=3x = - 3
B) local minimum at x=3x = - 3
C) local maximum at x=3x = - 3 ; local minimum at x=3x = 3
D) no local extrema

Correct Answer

verifed

verified

Find the absolute extreme values of the function on the interval. - g(x) =67x2,4x5g ( x ) = 6 - 7 x ^ { 2 } , - 4 \leq x \leq 5


A) absolute maximum is 12 at x=0x = 0 ; absolute minimum is 106- 106 at x=5x = 5
B) absolute maximum is 6 at x=0x = 0 ; absolute minimum is 169- 169 at x=5x = 5
C) absolute maximum is 7 at x=0x = 0 ; absolute minimum is 181- 181 at x=5x = 5
D) absolute maximum is 42 at x=0x = 0 ; absolute minimum is 106- 106 at x=4x = - 4

Correct Answer

verifed

verified

Find the largest open interval where the function is changing as requested. -Increasing y=(x29) 2\quad y = \left( x ^ { 2 } - 9 \right) ^ { 2 }


A) (,0) ( - \infty , 0 )
B) (3,0) ( - 3,0 )
C) (3,) ( 3 , \infty )
D) (3,3) ( - 3,3 )

Correct Answer

verifed

verified

Find the absolute extreme values of the function on the interval. - h(x) =12x+4,2x4h ( x ) = \frac { 1 } { 2 } x + 4 , - 2 \leq x \leq 4


A) absolute maximum is 2- 2 at x=4x = - 4 ; absolute minimum is 4- 4 at x=2x = 2
B) absolute maximum is 2- 2 at x=2x = - 2 ; absolute minimum is 3 at x=4x = 4
C) absolute maximum is 2- 2 at x=4x = 4 ; absolute minimum is 3 at x=2x = - 2
D) absolute maximum is 6 at x=4x = 4 ; absolute minimum is 3 at x=2x = - 2

Correct Answer

verifed

verified

Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval. - f(θ)={cosθθ,πθ<00,θ=0f ( \theta ) = \left\{ \begin{array} { c c } \frac { \cos \theta } { \theta } , & - \pi \leq \theta < 0 \\0 , & \theta = 0\end{array} \right.

Correct Answer

verifed

verified

Find the largest open interval where the function is changing as requested. -Decreasing y=1x2+7y = \frac { 1 } { x ^ { 2 } } + 7


A) (7,0) ( - 7,0 )
B) (0,) ( 0 , \infty )
C) (7,) ( 7 , \infty )
D) (7,7) ( - 7,7 )

Correct Answer

verifed

verified

Provide an appropriate response. -The function f(x)={7x0x<10x=1f ( x ) = \left\{ \begin{array} { l l } 7 x & 0 \leq x < 1 \\ 0 & x = 1 \end{array} \right. is zero at x=0x = 0 and x=1x = 1 and differentiable on (0,1)( 0,1 ) , but its derivative on (0,1)( 0,1 ) is never zero. Does this example contradict Rolle's Theorem?

Correct Answer

verifed

verified

This example does not contradi...

View Answer

Find the location of the indicated absolute extremum for the function. -Minimum Find the location of the indicated absolute extremum for the function. -Minimum   A)  x = -3 B)  x = -4 C)  x = 2 D)  x = 0


A) x = -3
B) x = -4
C) x = 2
D) x = 0

Correct Answer

verifed

verified

Find the extreme values of the function and where they occur. - y=1x2+1y = \frac { 1 } { x ^ { 2 } + 1 }


A) The minimum value is 1- 1 at x=0.5x = 0.5 .
B) The maximum value is 1 at x=0.5x = 0.5 , the minimum value is 1- 1 at x=0.5x = 0.5 .
C) The maximum value is 1 at x=0.5x = 0.5 .
D) The maximum value is 1 at x=0x = 0 .

Correct Answer

verifed

verified

Find all possible functions with the given derivative. - y=3t2ty ^ { \prime } = 3 t - \frac { 2 } { \sqrt { t } }


A) 3t24t+C3 t ^ { 2 } - 4 \sqrt { t } + C
B) t22t+Ct ^ { 2 } - 2 \sqrt { t } + C
C) 3t22t+C3 t ^ { 2 } - \frac { 2 } { \sqrt { t } } + C
D) 32t24t+C\frac { 3 } { 2 } t ^ { 2 } - 4 \sqrt { t } + C

Correct Answer

verifed

verified

Find all possible functions with the given derivative. - y=x5y ^ { \prime } = x ^ { 5 }


A) 5x4+C5 x 4 + C
B) 6x6+C6 x ^ { 6 } + C
C) 15x4+C\frac { 1 } { 5 } x ^ { 4 } + C
D) 16x6+C\frac { 1 } { 6 } x ^ { 6 } + C

Correct Answer

verifed

verified

Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema. - f(x) =0.1x4x315x2+59x+8f ( x ) = 0.1 x ^ { 4 } - x ^ { 3 } - 15 x ^ { 2 } + 59 x + 8


A) Approximate local maximum at 1.805; approximate local minima at -6.72 and 12.449
B) Approximate local maximum at 1.703; approximate local minima at -6.754 and 12.588
C) Approximate local maximum at 1.735; approximate local minima at -6.777 and 12.542
D) Approximate local maximum at 1.77; approximate local minima at -6.771 and 12.53

Correct Answer

verifed

verified

Find the derivative at each critical point and determine the local extreme values. - y={14x212x+154,x1x36x2+8x,x>1y = \left\{ \begin{array} { l l } - \frac { 1 } { 4 } x ^ { 2 } - \frac { 1 } { 2 } x + \frac { 15 } { 4 } , & x \leq 1 \\x ^ { 3 } - 6 x ^ { 2 } + 8 x , & x > 1\end{array} \right.


A)
 Critical Pt.  derivative  Extremum  Value x=10 local max 4x=3.150 local min 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1 & 0 & \text { local max } & 4 \\x=3.15 & 0 & \text { local min } & -3.08\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=1 undefined  local min 4x=3.150 local max 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1 & \text { undefined } & \text { local min } & 4 \\x=3.15 & 0 & \text { local max } & -3.08\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=10 local min 4x=3.150 local max 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-1 & 0 & \text { local min } & 4 \\x=3.15 & 0 & \text { local max } & -3.08\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=10 local max 4x=3.15 undefined  local max 3.08\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=1 & 0 & \text { local max } & 4 \\x=3.15 & \text { undefined } & \text { local max } & -3.08\end{array}

Correct Answer

verifed

verified

Showing 101 - 120 of 159

Related Exams

Show Answer