Filters
Question type

Study Flashcards

Determine which of the following are trigonometric identities. I. cos(t) cos(s) sin(t) +sin(s) +sin(t) sin(s) cos(t) +cos(s) =0\frac { \cos ( \mathrm { t } ) - \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } + \frac { \sin ( \mathrm { t } ) - \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } = 0 II. cos(t) +cos(s) sin(t) +sin(s) +sin(t) +sin(s) cos(t) +cos(s) =1\frac { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } + \frac { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } = 1 III. cos(t) +sin(s) cos(t) sin(s) =cos(s) +sin(t) \frac { \cos ( \mathrm { t } ) + \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) \sin ( \mathrm { s } ) } = \cos ( \mathrm { s } ) + \sin ( \mathrm { t } )


A) I is the only identity.
B) I, II, and III are identities.
C) II is the only identity.
D) II and II are the only identities.
E) I and II are the only identities.

Correct Answer

verifed

verified

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. sinα(cscαsinα) \sin \alpha ( \csc \alpha - \sin \alpha )


A) 1sin2α1 - \sin ^ { 2 } \alpha
B) csc2α1csc2α\frac { \csc ^ { 2 } \alpha - 1 } { \csc ^ { 2 } \alpha }
C) csc2αsec2α+tan2αcsc2α\frac { \csc ^ { 2 } \alpha - \sec ^ { 2 } \alpha + \tan ^ { 2 } \alpha } { \csc ^ { 2 } \alpha }
D) 1cot2α1 - \cot ^ { 2 } \alpha
E) cos2α\cos ^ { 2 } \alpha

Correct Answer

verifed

verified

Verify the given identity. cosucosvcosu+cosv=tan12(u+v)tan12(uv)\frac { \cos u - \cos v } { \cos u + \cos v } = - \tan \frac { 1 } { 2 } ( u + v ) \tan \frac { 1 } { 2 } ( u - v )

Correct Answer

verifed

verified

\[\begin{aligned} \frac { \cos u - \cos v } { \cos u + \cos v } & = \frac { - 2 \sin \left( \frac { u + v } { 2 } \right) \sin \left( \frac { u - v } { 2 } \right) } { 2 \cos \left( \frac { u + v } { 2 } \right) \cos \left( \frac { u - v } { 2 } \right) } \\ & = - \tan \left( \frac { u + v } { 2 } \right) \tan \left( \frac { u - v } { 2 } \right) \\ & = - \tan \frac { 1 } { 2 } ( u + v ) \tan \frac { 1 } { 2 } ( u - v ) \end{aligned}\]

Use the product-to-sum formula to write the given product as a sum or difference. 8sinπ8sinπ88 \sin \frac { \pi } { 8 } \sin \frac { \pi } { 8 }


A) 4sinπ164 \sin \frac { \pi } { 16 }
B) 44cosπ44 - 4 \cos \frac { \pi } { 4 }
C) 4+4cosπ164 + 4 \cos \frac { \pi } { 16 }
D) 4sinπ16- 4 \sin \frac { \pi } { 16 }
E) 4sinπ8+4cosπ84 \sin \frac { \pi } { 8 } + 4 \cos \frac { \pi } { 8 }

Correct Answer

verifed

verified

Use the half-angle formulas to determine the exact value of the following. cos(22.5) \cos \left( 22.5 ^ { \circ } \right)


A) 2+32- \frac { \sqrt { 2 + \sqrt { 3 } } } { 2 }
B) 222\frac { \sqrt { 2 - \sqrt { 2 } } } { 2 }
C) 222- \frac { \sqrt { 2 - \sqrt { 2 } } } { 2 }
D) 332\frac { \sqrt { 3 - \sqrt { 3 } } } { 2 }
E) 2+22\frac { \sqrt { 2 + \sqrt { 2 } } } { 2 }

Correct Answer

verifed

verified

Verify the identity shown below. tanθ+1secθ+cscθ=sinθ\frac { \tan \theta + 1 } { \sec \theta + \csc \theta } = \sin \theta

Correct Answer

verifed

verified

\[\begin{aligned}
\frac { \tan \theta + ...

View Answer

Find the exact value of tan(u+v) \tan ( u + v ) given that sinu=1161\sin u = - \frac { 11 } { 61 } and cosv=4041\cos v = \frac { 40 } { 41 } . (Both uu and vv are in Quadrant IV.)


A) tan(u+v) =37767\tan ( u + v ) = \frac { 37 } { 767 }
B) tan(u+v) =24882301\tan ( u + v ) = \frac { 2488 } { 2301 }
C) tan(u+v) =9802301\tan ( u + v ) = - \frac { 980 } { 2301 }
D) tan(u+v) =797767\tan ( u + v ) = \frac { 797 } { 767 }
E) tan(u+v) =833767\tan ( u + v ) = - \frac { 833 } { 767 }

Correct Answer

verifed

verified

Expand the expression below and use fundamental trigonometric identities to simplify. (sin(ω) +cos(ω) ) 2( \sin ( \omega ) + \cos ( \omega ) ) ^ { 2 }


A) sin2(ω) +cos2(ω) \sin ^ { 2 } ( \omega ) + \cos ^ { 2 } ( \omega )
B) 2tan(ω) +12 \tan ( \omega ) + 1
C) 2sin(ω) cos(ω) +12 \sin ( \omega ) \cos ( \omega ) + 1
D) 1
E) 2cot(ω) +12 \cot ( \omega ) + 1

Correct Answer

verifed

verified

C

If x=10sinθx = 10 \sin \theta , use trigonometric substitution to write 100x2\sqrt { 100 - x ^ { 2 } } as a trigonometric function of θ\theta , where π2<θ<π2- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } .


A) 10sinθ10 \sin \theta
B) 10cosθ10 \cos \theta
C) 10tanθ10 \tan \theta
D) 10cscθ10 \csc \theta
E) 10secθ10 \sec \theta

Correct Answer

verifed

verified

Use the sum-to-product formulas to write the given expression as a product. cos8θcos6θ\cos 8 \theta - \cos 6 \theta


A) 2sin7θsinθ- 2 \sin 7 \theta \sin \theta
B) 2cos7θcosθ2 \cos 7 \theta \cos \theta
C) 2cos7θsinθ2 \cos 7 \theta \sin \theta
D) 2sin7θcosθ2 \sin 7 \theta \cos \theta
E) 2cos7θcosθ- 2 \cos 7 \theta \cos \theta

Correct Answer

verifed

verified

Write the given expression as the sine of an angle. sin85cos50+sin50cos85\sin 85 ^ { \circ } \cos 50 ^ { \circ } + \sin 50 ^ { \circ } \cos 85 ^ { \circ }


A) sin(100) \sin \left( - 100 ^ { \circ } \right)
B) sin(135) \sin \left( 135 ^ { \circ } \right)
C) sin(35) \sin \left( 35 ^ { \circ } \right)
D) sin(85) \sin \left( 85 ^ { \circ } \right)
E) sin(50) \sin \left( 50 ^ { \circ } \right)

Correct Answer

verifed

verified

Verify the identity shown below. tanα+cotβtanαcotβ=tanβ+cotα\frac { \tan \alpha + \cot \beta } { \tan \alpha \cot \beta } = \tan \beta + \cot \alpha

Correct Answer

verifed

verified

\[\begin{aligned}
\frac { \tan \alpha + ...

View Answer

Find the exact solutions of the given equation in the interval [0,2π) [ 0,2 \pi ) .


A) x=0,π3,2π3,π,4π3x = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } , \pi , \frac { 4 \pi } { 3 }
B) x=π6,π2,5π6,3π2x = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 3 \pi } { 2 }
C) x=0,π2,π,3π2x = 0 , \frac { \pi } { 2 } , \pi , \frac { 3 \pi } { 2 }
D) x=π6,5π6,3π2x = \frac { \pi } { 6 } , \frac { 5 \pi } { 6 } , \frac { 3 \pi } { 2 }
E) x=π4,3π4,5π4,7π4x = \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } , \frac { 5 \pi } { 4 } , \frac { 7 \pi } { 4 }

Correct Answer

verifed

verified

Expand the expression below and use fundamental trigonometric identities to simplify. (sin(ω) +cos(ω) ) 2( \sin ( \omega ) + \cos ( \omega ) ) ^ { 2 }


A) sin2(ω) +cos2(ω) \sin ^ { 2 } ( \omega ) + \cos ^ { 2 } ( \omega )
B) 2tan(ω) +12 \tan ( \omega ) + 1
C) 2sin(ω) cos(ω) +12 \sin ( \omega ) \cos ( \omega ) + 1
D) 1
E) 2cot(ω) +12 \cot ( \omega ) + 1

Correct Answer

verifed

verified

Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. (sinx+cosx) (sinxcosx) ( \sin x + \cos x ) ( \sin x - \cos x )


A)
2sin2xsec2xtan2x2 \sin ^ { 2 } x - \sec ^ { 2 } x - \tan ^ { 2 } x
B)
sin2xcos2x\sin ^ { 2 } x - \cos ^ { 2 } x
C)
12cos2x1 - 2 \cos ^ { 2 } x
D)
csc2xcot2x2cos2x\csc ^ { 2 } x - \cot ^ { 2 } x - 2 \cos ^ { 2 } x
E)
12sin(π2x) cosx1 - 2 \sin \left( \frac { \pi } { 2 } - x \right) \cos x

Correct Answer

verifed

verified

Use the half-angle formulas to determine the exact value of the following. cos(22.5) \cos \left( - 22.5 ^ { \circ } \right)


A) 2+22- \frac { \sqrt { 2 + \sqrt { 2 } } } { 2 }
B) 232\frac { \sqrt { 2 - \sqrt { 3 } } } { 2 }
C) 232- \frac { \sqrt { 2 - \sqrt { 3 } } } { 2 }
D) 322\frac { \sqrt { 3 - \sqrt { 2 } } } { 2 }
E) 2+32\frac { \sqrt { 2 + \sqrt { 3 } } } { 2 }

Correct Answer

verifed

verified

Determine which of the following are trigonometric identities. 6 I. cos(4x) +cos(2x) 2cot(3x) =cot(x) \frac { \cos ( 4 x ) + \cos ( 2 x ) } { 2 \cot ( 3 x ) } = \cot ( x ) II. cos(4x) +cos(x) sin(3x) sin(x) =cot(2x) \frac { \cos ( 4 x ) + \cos ( x ) } { \sin ( 3 x ) - \sin ( x ) } = \cot ( 2 x ) III. cos(6x) +cos(2x) sin(4x) +sin(2x) =cot(3x) \frac { \cos ( 6 x ) + \cos ( 2 x ) } { \sin ( 4 x ) + \sin ( 2 x ) } = \cot ( 3 x )


A) III is the only identity.
B) I, II, and III are identities.
C) I is the only identity.
D) None are identities.
E) II is the only identity.

Correct Answer

verifed

verified

A

Find the exact value of tan(u+v) \tan ( u + v ) given that sinu=35\sin u = - \frac { 3 } { 5 } and cosv=2425\cos v = \frac { 24 } { 25 } . (Both uu and vv are in Quadrant IV.)


A) tan(u+v) =4175\tan ( u + v ) = \frac { 41 } { 75 }
B) tan(u+v) =3875\tan ( u + v ) = \frac { 38 } { 75 }
C) tan(u+v) =43\tan ( u + v ) = - \frac { 4 } { 3 }
D) tan(u+v) =8975\tan ( u + v ) = \frac { 89 } { 75 }
E) tan(u+v) =3925\tan ( u + v ) = - \frac { 39 } { 25 }

Correct Answer

verifed

verified

Write the given expression as an algebraic expression. cos(arccosxarcsinx) \cos ( \arccos x - \arcsin x )


A) x1x2xx2+1\frac { x \sqrt { 1 - x ^ { 2 } } - x } { \sqrt { x ^ { 2 } + 1 } }
B) 2x1x22 x \sqrt { 1 - x ^ { 2 } }
C) x1x2+xx2+1\frac { x \sqrt { 1 - x ^ { 2 } } + x } { \sqrt { x ^ { 2 } + 1 } }

Correct Answer

verifed

verified

Add or subtract as indicated; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. sinx+1+1sinx1\sin x + 1 + \frac { 1 } { \sin x - 1 }


A) sin2xsinx1\frac { \sin ^ { 2 } x } { \sin x - 1 }
B) 1cos2xsinx1\frac { 1 - \cos ^ { 2 } x } { \sin x - 1 }
C) 1+cos2xsinx1\frac { 1 + \cos ^ { 2 } x } { \sin x - 1 }
D) secxcosxtanxsecx\frac { \sec x - \cos x } { \tan x - \sec x }
E) cscxcotxcosx1cscx\frac { \csc x - \cot x \cos x } { 1 - \csc x }

Correct Answer

verifed

verified

Showing 1 - 20 of 120

Related Exams

Show Answer