Filters
Question type

Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=1+2xf ( x ) = \sqrt { 1 + 2 x }

Correct Answer

verifed

verified

Find the interval of convergence of the power series: k=1(1)kkk2(x1)k\sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k } \frac { \sqrt { k } } { k ^ { 2 } } ( x - 1 ) ^ { k }

Correct Answer

verifed

verified

[0, 2]

Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=xexf ( x ) = x e ^ { x }

Correct Answer

verifed

verified

Find the interval of convergence of the power series: k=0k!(x1) k\sum _ { k = 0 } ^ { \infty } k ! ( x - 1 ) ^ { k }


A) (-1, 1)
B) Converges only when x = 1
C) (0, 1)
D) (-?, ?)

Correct Answer

verifed

verified

Find the interval of convergence and radius of convergence of the power series: k=011+3kxk\sum _ { k = 0 } ^ { \infty } \frac { 1 } { 1 + 3 ^ { k } } x ^ { k }


A) R = 1, interval of convergence: (-1, 1)
B) R = 1, interval of convergence: (-3, 3)
C) R = 3, interval of convergence: (-1, 1)
D) R = 3, interval of convergence: (-3, 3)

Correct Answer

verifed

verified

Find the series equal to the definite integral 0x2ex2dx\int _ { 0 } x ^ { 2 } e ^ { - x ^ { 2 } } d x

Correct Answer

verifed

verified

Find the interval of convergence of the power series: k=0(1) kk22k(x2) k\sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } \frac { k ^ { 2 } } { 2 ^ { k } } ( x - 2 ) ^ { k }


A) [0, 4)
B) (0, 4)
C) (0, 4]
D) [0, 4]

Correct Answer

verifed

verified

Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=e2xf ( x ) = e ^ { 2 x } at x = 1.

Correct Answer

verifed

verified

Find the radius of convergence of the series: k=0k!(k+2) !xk\sum _ { k = 0 } ^ { \infty } \frac { k ! } { ( k + 2 ) ! } x ^ { k }


A) R = 0
B) R = 1
C) R = 2
D) R = ?

Correct Answer

verifed

verified

Find the interval of convergence of the power series: k=012k!xk\sum _ { k = 0 } ^ { \infty } \frac { 1 } { 2 k ! } x ^ { k }


A) (-1, 1)
B) Converges only when x = 0.
C) (0, 2)
D) (-?, ?)

Correct Answer

verifed

verified

D

Find the Maclaurin series for the function f(x) =xcosxf ( x ) = x \cos x


A) k=0(1) kk!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { k ! } x ^ { 2 k + 1 }
B) k=0(1) k(2k) !x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { 2 k + 1 }
C) k=0(1) k(2k) !x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { 2 k }
D) k=0(1) k(2k) !xk+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { k + 1 }

Correct Answer

verifed

verified

Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=extan1xf ( x ) = e ^ { x } \tan ^ { - 1 } x Also, give the interval of convergence.

Correct Answer

verifed

verified

blured image interval ...

View Answer

Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=e2xcosxf ( x ) = e ^ { 2 x } \cos x Also, give the interval of convergence.

Correct Answer

verifed

verified

blured image interval ...

View Answer

Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=e2xf ( x ) = e ^ { - 2 x }

Correct Answer

verifed

verified

\(1 - 2 x + 2 x ^ { 2 } - \frac { 4 } { 3 } x ^ { 3 } + \frac { 2 } { 3 } x ^ { 4 }\)

Find the interval of convergence of the power series: k=03k+1k3(x1) k\sum _ { k = 0 } ^ { \infty } \frac { 3 k + 1 } { k ^ { 3 } } ( x - 1 ) ^ { k }


A) (0, 2)
B) [0, 2)
C) (0, 2]
D) [0, 2]

Correct Answer

verifed

verified

Find the series equal to the definite integral 02sin(x2)dx\int _ { 0 } ^ { 2 } \sin \left( x ^ { 2 } \right) d x

Correct Answer

verifed

verified

Find the interval of convergence and radius of convergence of the power series: k=0(3k) kx2k\sum _ { k = 0 } ^ { \infty } \left( \frac { 3 } { k } \right) ^ { k } x ^ { 2 k }


A) R = 1, interval of convergence: (-1, 1)
B) R = ?, interval of convergence: (-?, ?)
C) R = 1, interval of convergence: (0, 2)
D) R = 3, interval of convergence: (-3, 3)

Correct Answer

verifed

verified

Find the series equal to the definite integral 0xcos(x2)dx\int _ { 0 } x \cos \left( x ^ { 2 } \right) d x

Correct Answer

verifed

verified

Find the Maclaurin series for the function f(x) =cos(2x2) f ( x ) = \cos \left( 2 x ^ { 2 } \right) , and give the interval of convergence of the series.


A) k=022k(2k) !x2k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 2 k } interval of convergence: (-?, ?)
B) k=022k(2k) !x2k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 2 k } interval of convergence: (0, 1)
C) k=0(1) k22k(2k) !x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 2 k } interval of convergence: (-?, ?)
D) k=0(1) k22k(2k) !x4k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 4 k } interval of convergence: (-?, ?)

Correct Answer

verifed

verified

Find the Maclaurin series for the function f(x)=xsin(x2)f ( x ) = x \sin \left( x ^ { 2 } \right) , and give the interval of convergence of the series.

Correct Answer

verifed

verified

blured image interval ...

View Answer

Showing 1 - 20 of 61

Related Exams

Show Answer