Filters
Question type

Determine whether the series converges or diverges. n=1(1)nn+4\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n + 4 }

Correct Answer

verifed

verified

Determine whether the series is convergent or divergent. If it is convergent, write its sum. Otherwise write divergent. n=15(34)n1\sum _ { n = 1 } ^ { \infty } 5 \left( \frac { 3 } { 4 } \right) ^ { n - 1 }

Correct Answer

verifed

verified

Determine which one of the p-series below is convergent.


A) n=11n7\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 7 } }
B) n=1n06\sum _ { n = 1 } ^ { \infty } n ^ { - 06 }
C) n=11n08\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 08 } }
D) n=11n3/4\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 3 / 4 } }

Correct Answer

verifed

verified

Determine which one of the p-series below is divergent.


A) n=11n03\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 03 } }
B) n=1n4x\sum _ { n = 1 } ^ { \infty } n ^ { - 4 x }
C) n=11n3e\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 3 e } }
D) n=11n4\sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { 4 } }

Correct Answer

verifed

verified

Determine whether the given series is convergent or divergent. n=1n8n\sum _ { n = 1 } ^ { \infty } \frac { n } { 8 ^ { n } }

Correct Answer

verifed

verified

Use series to approximate the definite integral to within the indicated accuracy. 005x2ex2dx error <0.001\int _ { 0 } ^ { 05 } x ^ { 2 } e ^ { - x ^ { 2 } } d x \quad \mid \text { error } \mid < 0.001


A) 0.0354
B) 0.0125
C) 0.0625
D) 0.1447
E) 0.2774

Correct Answer

verifed

verified

Determine whether the series is convergent or divergent. n=1n2+9n7+n\sum _ { n = 1 } ^ { \infty } \frac { n ^ { 2 } + 9 } { n ^ { 7 } + n }

Correct Answer

verifed

verified

Use the Integral Test to determine whether the series is convergent or divergent. n=127n+4\sum _ { n = 1 } ^ { \infty } \frac { 2 } { 7 n + 4 }

Correct Answer

verifed

verified

Determine whether the series is convergent or divergent. n=17nn!n\sum _ { n = 1 } ^ { \infty } \frac { 7 ^ { n } } { n ! n }

Correct Answer

verifed

verified

Find the radius of convergence and the interval of convergence of the power series. n=2xnn(lnn) 8\sum _ { n = 2 } ^ { \infty } \frac { x ^ { n } } { n ( \ln n ) ^ { 8 } }


A) R=0,I={0}R = 0 , I = \{ 0 \}
B) R=1,I=[1,1]R = 1 , I = [ - 1,1 ]
C) R=1,I=(1,1) R = 1 , I = ( - 1,1 )
D) R=,I=(,) R = \infty , I = ( - \infty , \infty )

Correct Answer

verifed

verified

Find the radius of convergence and the interval of convergence of the power series. n=0xnn+2\sum _ { n = 0 } ^ { \infty } \frac { x ^ { n } } { n + 2 }


A) R=2,I=[2,2) R = 2 , I = [ - 2,2 )
B) R=1,I=(1,1) R = 1 , I = ( - 1,1 )
C) R=1,I=[1,1) R = 1 , I = [ - 1,1 )
D) R=2,I=(2,2) R = 2 , I = ( - 2,2 )

Correct Answer

verifed

verified

Determine whether the series converges or diverges. n=2(1)nlnn9n\sum _ { n = 2 } ^ { \infty } \frac { ( - 1 ) ^ { n } \ln n } { 9 ^ { n } }

Correct Answer

verifed

verified

Use the Integral Test to determine whether the series is convergent or divergent. n=118n+2\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 8 n + 2 }

Correct Answer

verifed

verified

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. n=1(1)nnn6\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { n \sqrt [ 6 ] { n } }

Correct Answer

verifed

verified

absolutely...

View Answer

Determine whether the series converges or diverges. n=1(1)n6nn\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \sqrt [ n ] { 6 n } }

Correct Answer

verifed

verified

Find the sum of the series. n=05n6nn!\sum _ { n = 0 } ^ { \infty } \frac { 5 ^ { n } } { 6 ^ { n } n ! }

Correct Answer

verifed

verified

Determine whether the sequence converges or diverges. If it converges, find the limit. an=2e4n/(n+2)a _ { n } = 2 e ^ { 4 n / ( n + 2 ) }

Correct Answer

verifed

verified

Find the radius of convergence and the interval of convergence of the power series. n=14nxnn\sum _ { n = 1 } ^ { \infty } \frac { 4 ^ { n } x ^ { n } } { n }

Correct Answer

verifed

verified

Find the radius of convergence and the interval of convergence of the power series. n=1(1) n1(x6) nn5n\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } ( x - 6 ) ^ { n } } { n \cdot 5 ^ { n } }


A) R=6,I=(1,11]R = 6 , I = ( - 1,11 ]
B) R=5,I=(1,11]R = 5 , I = ( 1,11 ]
C) R=15,I=[15,15) R = \frac { 1 } { 5 } , I = \left[ - \frac { 1 } { 5 } , \frac { 1 } { 5 } \right)
D) R=5,I=[5,5) R = 5 , I = [ - 5,5 )

Correct Answer

verifed

verified

Determine whether the sequence defined by an=sin2n9na _ { n } = \frac { \sin 2 n } { 9 n } converges or diverges. If it converges, find its limit.


A) Diverges
B) 1
C) 29\frac { 2 } { 9 }
D) 0

Correct Answer

verifed

verified

Showing 61 - 80 of 158

Related Exams

Show Answer